
Arrays

09/10/08 © 2009 All Rights Reserved. 2

Array of Native Type Values

 Creating an array of native type values includes two

steps:
Declaring the variable that should hold the reference for the array (the

object).

int vec[];

Creating an array (an object) and assign its reference to the vec variable.

vec = new int[12];

09/10/08 © 2009 All Rights Reserved. 3

Array of Native Type Values

 The result of these two statements is:

vec F16DA2

09/10/08 © 2009 All Rights Reserved. 4

Arrays of Native Type Values

 Each and every value is stored in a cell. Every cell

has an index number. The indexing starts at 0.

vec[0] = 12;

vec[2] = vec[0] + 3;

09/10/08 © 2009 All Rights Reserved. 5

Arrays of Objects

 Creating an array of objects includes the following

two steps:
Declaring the variable that holds the reference to the array (the object).

Student vec[];

Creating the object (creating the array).

vec = new Student[12];

09/10/08 © 2009 All Rights Reserved. 6

Arrays of Objects

 When the array is created it holds null in each one

of its cells.

 Instantiating the objects and place their references in

the array's cells can be considered as the third step.

09/10/08 © 2009 All Rights Reserved. 7

Arrays of Objects

 We can create all objects using a simple loop and

place their references in the array's cells.

for(int i=0; i<12; i++)

{

 vec[i] = new Student();

}

09/10/08 © 2009 All Rights Reserved. 8

Arrays of Objects

 The result of these three statements can be

described using the following diagram:

vec F16DA2

09/10/08 © 2009 All Rights Reserved. 9

Arrays of Objects

The Detailed Syntax

Student vec[];

vec = new Student[3];

vec[0] = new Student(“Moshe”);

vec[1] = new Student(“David”);

vec[2] = new Student(“Ramy”);

The Short Syntax

Student vec[] = { new Student(“Moshe”),

 new Student(“David”),

 new Student(“Ramy”) };

09/10/08 © 2009 All Rights Reserved. 10

The Square Brackets Position

 The square brackets can be placed either before the

variable name or after it.

 Placing the square brackets before or after has a a

different meaning.

int vec[], number1, number2;

int []vec, number1, number2; number1 and number2
are variables that can
hold references for arrays

number1 and number2
are simple variables

09/10/08 © 2009 All Rights Reserved. 11

Copying Array Values

 In order to copy the values of one array to an other one

you should use the method System.arraycopy()

public static void arraycopy(

Object src,

int src_position,

Object dst,

int dst_position,

int length) ‏

09/10/08 © 2009 All Rights Reserved. 12

Multi-Dimensional Array

 A multi-dimensional array is an array of arrays. There

are two ways for creating multi-dimensional arrays:

Detailed Way

int matrix[][];

matrix = new int[3][];

matrix[0] = new int[4];

matrix[1] = new int[4];

matrix[2] = new int[4];

Short Way

int matrix[][] = new int[3][4];

09/10/08 © 2009 All Rights Reserved. 13

The length variable

 Each and every array has a variable that its name is

length. This variable holds the size of the array.

int vec[] = {12,32,42,55};
for(int i=0; i<vec.length; i++)
{

System.out.println(vec[i]);
}

int mat[][] = {{1,2,3,7,8}, {3,2}, {4,6,5,5}};

09/10/08 © 2009 All Rights Reserved. 14

The for Loop

 When there is a need to iterate the items an array or a

collection holds, we can use the for loop as if it was

a foreach loop.

for(typeName ___ : ___)

{

 ...

 ...

}

The collection or the
array we want to iterate

The general type
for all elements

The element in
each iteration

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14

