
09/02/21 © 2009 Haim Michael 1

Classes

09/02/21 © 2009 Haim Michael 2

Introduction

 Objects are particular and finite elements in a larger model.

 The class is a blueprint for creating objects (a particular

data structure), providing initial values for state (member

variables or attributes), and implementations of behavior

(member functions or methods).

 A class type variable contains a “handle” (reference)

for a specific object.

09/02/21 © 2009 Haim Michael 3

Class Definition

[modifiers] class name_of_the_class

{

[variables declaration]

[constructors declaration]

[methods declaration]

}

09/02/21 © 2009 Haim Michael 4

Class Type Variables

 The class type variable isn’t an object. It is a simple

variable that can hold a reference for a specific object.

 When the class type variable holds a reference of a

specific object we can use that variable in order to

access the variables inside that object as well as for

calling various methods on it.

09/02/21 © 2009 Haim Michael 5

Class Type Variable

 Given the class Rectangle, and a class type

variable named rec, initializing the rec variable might

look the following:

Rectangle rec = new Rectangle();

FDD9rec

Instance of the class Rectangle

FDD9

width height

09/02/21 © 2009 Haim Michael 6

Class Type Variable

Given the class Rectangle, and the two class type

variables named recA and recB, the following code

results in two variables that point to the same object.

Rectangle recA = new Rectangle();

Rectangle recB = recA;

FDD9recA Instance of the class Rectangle

FDD9

FDD9recB
width height

09/02/21 © 2009 Haim Michael 7

Instance Variables

 We can easily use the dot (.) in order to access the

object variables, get their values and set new ones.

Rectangle recA = new Rectangle();

recA.width = 12;

recA.height = 8;

FDD9recA Instance of the class Rectangle

FDD9

FDD9recB
width height12

09/02/21 © 2009 Haim Michael 8

Instance Methods

 We can call a method on a specific object by writing

the reference for that object following with a dot (.)

and the name of the method right after it.

Rectangle rec = new Rectangle();

rec.setWidth(12);

rec.setHeight(8);

 BB22rec

Instance of the class Rectangle

BB22

width height12 8

09/02/21 © 2009 Haim Michael 9

Comparing Objects

Rectangle recA = new Rectangle();

Rectangle recB = new Rectangle();

recA.width = 12; recB.width = 12;

recA.height = 8; recB.height = 8;

if(recA==recB)

{

...

 }

FDD9recA

Instance of the class Rectangle

FDD9

BB22recB

width height12 8

Instance of the class Rectangle

BB22

width height12 8

09/02/21 © 2009 Haim Michael 10

Comparing Objects

 Calling the equals method is the right way for

comparing between two objects
Rectangle recA = new Rectangle();

Rectangle recB = new Rectangle();

recA.width = 12; recA.height = 8;

recB.width = 12; recB.height = 8;

if(recA.equals(recB)) { …}

FDD9recA

Instance of the class Rectangle

FDD9

BB22recB

width height12 8

Instance of the class Rectangle

BB22

width height12 8

09/02/21 © 2009 Haim Michael 11

The null Value

 The special value null can be assigned to any class

type variable.

Rectangle recA = new Rectangle();

Rectangle recB = new Rectangle();

recA = null;

nullrecA

Instance of the class Rectangle

FDD9

BB22recB

width height12 8

Instance of the class Rectangle

BB22

width height12 8

09/02/21 © 2009 Haim Michael 12

The this Keyword

 The this keyword holds the reference of the current

object. We can use it within instance methods or

constructors only.

void setWidth(double width)

{

this.width = width;

}

BB22rec

Instance of the class Rectangle

BB22

height width99 8

09/02/21 © 2009 Haim Michael 13

Fields Definition

[modifiers] <type> <name> [=default value];

09/02/21 © 2009 Haim Michael 14

Methods Definition

[modifiers] <return_type> <name> (

<parameter_type> <parameter_name>, ..)

{

<statements>

}

09/02/21 © 2009 Haim Michael 15

Methods Overloading

 The same method can be defined in the same class in

several different versions.

 All versions should be defined with a returned value of

the same type.

 The parameters list in each and every method should

be with a different signature.

09/02/21 © 2009 Haim Michael 16

Constructors Definition

[modifiers] <class_name> (

<parameter_type> <parameter name>, ..)

{

<statements>

}

09/02/21 © 2009 Haim Michael 17

The Default Constructor

 The default constructor exists when we define a class

without defining a specific constructor. The default

constructor doesn’t have parameters.

09/02/21 © 2009 Haim Michael 18

Constructors Overloading

 Constructors can be overloaded (like methods).

public Rectangle() {...}

public Rectangle(int num) {...}

public Rectangle(int num1, int num2) {...}

 Each and every constructor should be defined with a

different signature.

09/02/21 © 2009 Haim Michael 19

Using this Within Constructors

 Placing the this keyword in the first line (within the

constructor block) we can call another constructor.

09/02/21 © 2009 Haim Michael 20

Static Variables

 When we define a class variable together with the

static modifier we shall get a static variable.

 The static variable is associated with the class as a

whole rather than with a particular instance.

09/02/21 © 2009 Haim Michael 21

Static Variables

 The static variable can be accessed from within any

method of the class.

 The static variable can also be accessed from outside

of the class scope if its access modifier allows it.

 Static variables can be accessed by using a class

type reference or by using the name of the class.

09/02/21 © 2009 Haim Michael 22

Static Methods

 When we define a method together with the static

modifier we shall get a static method.

 The static method is associated with the class as a

whole rather than with a particular instance.

09/02/21 © 2009 Haim Michael 23

Static Methods

 The static method can be called from within any

method of the class.

 The static method can also be accessed from outside

of the class scope if its access modifier allows it.

 Static methods can be called by using a class type

reference or by using the name of the class.

09/02/21 © 2009 Haim Michael 24

Static Initializers

 A static block’ is a block of code that doesn’t belong to

any specific method. The static block is prefixed with

the static modifier.

 The static block contains code which is executed

when the class is loaded to the JVM memory.

 The code within the static block is executed only once

(when the class is loaded).

09/02/21 © 2009 Haim Michael 25

Final Variables

 A final variable can be set only once. Once the final

variable was initialized it is impossible to assign it with

another value.

 The final variable assignment can occur

independently of its declaration.

09/02/21 © 2009 Haim Michael 26

Final Variables

 When having a final instance variable that its value

isn't set together with its declaration, that final variable

must be set in each and every constructor.

 When having a final static variable that its value isn't

set together with its declaration, that final variable

must be set in one of the static blocks.

09/02/21 © 2009 Haim Michael 27

The package Statement

 The package is a group of classes and interfaces.

Each and every package can contain sub packages.

09/02/21 © 2009 Haim Michael 28

The package Statement

 The package statement starts with the keyword

package.

package <package_name>.<package_name>…. ;

The following is an example for declaring a package

with an hierarchy of three levels.

package com.zozobra.examples;

09/02/21 © 2009 Haim Michael 29

The package Statement

 Only one package statement per one source file is

allowed.

 If the package statement isn’t included within the

source file then all classes in that specific source file

will be part of the default package.

09/02/21 © 2009 Haim Michael 30

The import statement

 The import statement can import either a specific

class or all classes (that belong to specific package).

import <package name>.<package name>.<class name>;

import <package name>.<package name>.*;

 The following example imports all classes that belong

to the java.awt package.

import java.awt.*;

	Object Oriented Programming
	Objects, Classes and Class Type variables
	Declaring a class
	Using class type variable
	Slide 5
	Slide 6
	Slide 7
	Calling a method on a specific object
	Slide 9
	Slide 10
	Slide 11
	The special keyword: ‘this’
	Declaring Attributes
	Declaring Methods
	Methods Overloading
	Declaring Constructors
	Default Constructor
	Overloading Constructors
	Using ‘this’ within Constructors
	Static Variables
	Slide 21
	Static Methods
	Slide 23
	Static Initializers
	Final Variables
	Slide 26
	Software Packages
	The package Statement
	Slide 29
	The import statement

